Deterministic features of side-chain main-chain hydrogen bonds in globular protein structures.
نویسندگان
چکیده
A total of 19 835 polar residues from a data set of 250 non-homologous and highly resolved protein crystal structures were used to identify side-chain main-chain (SC-MC) hydrogen bonds. The ratio of the number of SC-MC hydrogen bonds to the total number of polar residues is close to 1:2, indicating the ubiquitous nature of such hydrogen bonds. Close to 56% of the SC-MC hydrogen bonds are local involving side-chain acceptor/donor ('i') and a main-chain donor/acceptor within the window i-5 to i+5. These short-range hydrogen bonds form well defined conformational motifs characterized by specific combinations of backbone and side-chain torsion angles. (a) The Ser/Thr residues show the greatest preference in forming intra-helical hydrogen bonds between the atoms O(gamma)(i) and O(i-4). More than half the examples of such hydrogen bonds are found at the middle of alpha-helices rather than at their ends. The most favoured motif of these examples is alpha(R)alpha(R)alpha(R)alpha(R)(g(-)). (b) These residues also show great preference to form hydrogen bonds between O(gamma)(i) and O(i-3), which are closely related to the previous type and though intra-helical, these hydrogen bonds are more often found at the C-termini of helices than at the middle. The motif represented by alpha(R)alpha(R)alpha(R)alpha(R)(g(+)) is most preferred in these cases. (c) The Ser, Thr and Glu are the most frequently found residues participating in intra-residue hydrogen bonds (between the side-chain and main-chain of the same residue) which are characterized by specific motifs of the form beta(g(+)) for Ser/Thr residues and alpha(R)(g(-)g(+)t) for Glu/Gln. (d) The side-chain acceptor atoms of Asn/Asp and Ser/Thr residues show high preference to form hydrogen bonds with acceptors two residues ahead in the chain, which are characterized by the motifs beta (tt')alphaR and beta(t)alpha(R), respectively. These hydrogen bonded segments, referred to as Asx turns, are known to provide stability to type I and type I' beta-turns. (e) Ser/Thr residues often form a combination of SC-MC hydrogen bonds, with the side-chain donor hydrogen bonded to the carbonyl oxygen of its own peptide backbone and the side-chain acceptor hydrogen bonded to an amide hydrogen three residues ahead in the sequence. Such motifs are quite often seen at the beginning of alpha-helices, which are characterized by the beta(g(+))alpha(R)alpha(R) motif. A remarkable majority of all these hydrogen bonds are buried from the protein surface, away from the surrounding solvent. This strongly indicates the possibility of side-chains playing the role of the backbone, in the protein interiors, to satisfy the potential hydrogen bonding sites and maintaining the network of hydrogen bonds which is crucial to the structure of the protein.
منابع مشابه
Statistical and molecular dynamics studies of buried waters in globular proteins.
Buried solvent molecules are common in the core of globular proteins and contribute to structural stability. Folding necessitates the burial of polar backbone atoms in the protein core, whose hydrogen-bonding capacities should be satisfied on average. Whereas the residues in alpha-helices and beta-sheets form systematic main-chain hydrogen bonds, the residues in turns, coils and loops often con...
متن کاملHydrogen bonds of DsrD protein revealed by neutron crystallography
The features of hydrogen bonds in DsrD protein from sulfate-reducing bacteria have been investigated by neutron protein crystallography. The function of DsrD has not yet been elucidated clearly, but its X-ray crystal structure revealed that it comprises a winged-helix motif and shows the highest structural homology to the DNA-binding proteins. Since any neutron structure of a DNA recognition pr...
متن کاملA theoretical study on quadrupole coupling parameters of HRPII Protein modeled as 310-helix & α-helix structures
A fragment of Histidine rich protein II (HRP II 215-236) was investigated by 14N and 17O electric field gradient, EFG, tensor calculations using DFT. This study is intended to explore the differences between 310-helix and α-helix of HRPII both in the gas phase and in solution. To achieve the aims, the 17O and 14N NQR parameters of a fragment of HRPII (215-236) for both structures are calculated...
متن کاملSecondary structures without backbone: an analysis of backbone mimicry by polar side chains in protein structures.
Backbone mimicry by the formation of closed-loop C7, C10 and C13 (mimics of gamma-, beta- and alpha-turns) conformations through side chain-main chain hydrogen bonds by polar groups is a frequent observation in protein structures. A data set of 250 non-homologous and high-resolution protein crystal structures was used to analyze these conformations for their characteristic features. Seven out o...
متن کاملExploring the Interplay between Topology and Secondary Structural Formation in the Protein Folding Problem
Simple models with a single bead representation (CR models) have been successful in providing a qualitative understanding of the folding mechanism of small globular proteins. Can we go beyond this qualitative understanding and make more detailed quantitative connections to experiments? To achieve this goal, a tractable framework of protein representations whose complexity falls between CR and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Protein engineering
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2000